Mission (BS-Software Engineering)
Bachelor of Science in Software Engineering (BSSE)
CURRICULUM:
Total Credit Hours: 130
Duration: 4 Years (8 Semesters)
Course Outlines of BS in Software Engineering:
SS-1101T: Ideology and Constitution of Pakistan (Cr Hr 2+0)
(Prerequisite: none)
Historical background of Pakistan: Muslim society in Indo-Pakistan, the movement led by the societies, the downfall of Islamic society, the establishment of British Raj- Causes and consequences. Political evolution of Muslims in the twentieth century: Sir Syed Ahmed Khan; Muslim League; Nehru; Allama Iqbal: Independence Movement; Lahore Resolution; Pakistan culture and society, Constitutional and Administrative issues, Pakistan and its geopolitical dimension, Pakistan and International Affairs, Pakistan and the challenges ahead.
CS-1101T: Programming Fundamentals (Cr Hr 3+1)
(Prerequisite: none)
Introduction to problem solving, a brief review of Von-Neumann architecture, Introduction to programming, role of compiler and linker, introduction to algorithms, basic data types and variables, input/output constructs, arithmetic, comparison and logical operators, conditional statements and execution flow for conditional statements, repetitive statements and execution flow for repetitive statements, lists and their memory organization, multi-dimensional lists, introduction to modular programming, function definition and calling, stack rolling and unrolling, string and string operations, pointers/references, static and dynamic memory allocation, File I/O operations.
MT-1101T: Linear Algebra (Cr Hr 3+0)
(Prerequisite: none)
Algebra of linear transformations and matrices. determinants, rank, systems of equations, vector spaces, orthogonal transformations, linear dependence, linear Independence and bases, eigenvalues and eigenvectors, characteristic equations, Inner product space and quadratic forms.
NS-1101T: Applied Physics (Cr Hr 3+0)
(Prerequisite: none)
Electric force and its applications and related problems, conservation of charge, charge quantization, Electric fields due to point charge and lines of force. Ring of charge, Disk of charge, A point charge in an electric field, Dipole in a n electric field, The flux of vector field, The flux of electric field, Gauss’ Law, Application of Gauss’ Law, Spherically symmetric charge distribution, A charge isolated conductor, Electric potential energy, Electric potentials, Calculating the potential from the field and related problem Potential due to point and continuous charge distribution, Potential due to dipole, equipotential surfaces, Calculating the field from the potential , Electric current, Current density, Resistance, Resistivity and conductivity, Ohm’s law and its applications, The Hall effect, The magnetic force on a current, The Biot- Savart law, Line of B, Two parallel conductors, Amperes’ s Law, Solenoid, Toroids,
Faraday’s experiments, Faraday’s Law of Induction, Lenz’s law, Motional emf, Induced electric field, Induced electric fields, The basic equation of electromagnetism, Induced Magnetic field, The displacement current, Reflection and Refraction of light waves, Total internal reflection, Two source interference, Double Slit interference, related problems, Interference from thin films, Diffraction and the wave theory, related problems, Single-Slit Diffraction, related problems, Polarization of electromagnetic waves, Polarizing sheets, related problems.
CS-1102T: Application of Information & Communication Technologies
(Cr Hr 2+1) (Prerequisite: none)
Brief history of Computer, Four Stages of History, Computer Elements, Processor, Memory, Hardware, Software, Application Software its uses and Limitations, System Software its Importance and its Types, Types of Computer (Super, Mainframe, Mini and Micro Computer), Introduction to CBIS (Computer Based Information System), Methods of Input and Processing, Class2. Organizing Computer Facility, Centralized Computing Facility, Distributed Computing Facility, Decentralized Computing Facility, Input Devices. Keyboard and its Types, Terminal (Dump, Smart, Intelligent), Dedicated Data Entry, SDA (Source Data Automation), Pointing Devices, Voice Input, Output Devices. Soft- Hard Copies, Monitors and its Types, Printers and its Types, Plotters, Computer Virus and its Forms, Storage Units, Primary and Secondary Memories, RAM and its Types, Cache, Hard Disks, Working of Hard Disk, Diskettes, RAID, Optical Disk Storages (DVD, CD ROM), Magnetic Types, Backup System, Data Communications, Data Communication Model, Data Transmission, Digital and Analog Transmission, Modems, Asynchronous and Synchronous Transmission, Simplex. Half Duplex, Full Duplex Transmission, Communications, Medias (Cables, Wireless), Protocols, Network Topologies (Star, Bus, Ring), LAN, LAN, Internet, A Brief History, Birthplace of ARPA Net, Web Link, Browser, Internet Services provider and Online Services Providers, Function and Features of Browser, Search Engines, Some Common Services available on Internet.
SS-1102T: Islamic Studies (Cr Hr 2+0)
(Prerequisite: none)
Basic Themes of Quran, Introduction to Sciences of Hadith, Introduction to Islamic Jurisprudence, Primary & Secondary Sources of Islamic Law, Makken & Madnian life of the Prophet, Islamic Economic System, Political theories, Social System of Islam. Definition of Akhlaq.The Most Important Characters mentioned in the Holy Qur’an and Sunnah, SIDQ (Truthfulness)Generosity Tawakkaul(trust on Allah)Patience Taqua (piety). Haqooq ul ibad in the light of Quran & Hadith – the important characteristic of Islamic Society.
SS-1103T: Ethical Behavior (Cr Hr 2+0)
(Prerequisite: none)
Scope and methods of Ethics: Ethics and religion; Ethical teachings of world religions; Basic moral concepts, right and wrong, good and evil; Outline of ethical systems in philosophy; Hedonism, utilitarianism, rationalism, self realization theories, Intuitionism; Islamic moral theory: Ethics of Quran and its philosophical basis, ethical percepts of Quran and Hadith and promotion of moral values in society.
MT-1202T: Calculus and Analytical Geometry (Cr Hr 3+0)
(Prerequisite: none)
Limits and Continuity; Introduction to functions, Introduction to limits, Techniques of funding limits, Indeterminate forms of limits, Continuous and discontinuous functions and their applications, Differential calculus; Concept and idea of differentiation, Geometrical and Physical meaning of derivatives, Rules of differentiation, Techniques of differentiation, Rates of change, Tangents and Normals lines, Chain rule, implicit differentiation, linear approximation, Applications of differentiation; Extreme value functions, Mean value theorems, Maxima and Minima of a function for single-variable, Concavity, Integral calculus; Concept and idea of Integration, Indefinite Integrals, Techniques of integration, Riemann sums and Definite Integrals, Applications of definite integrals, Improper integral, Applications of Integration; Area under the curve, Analytical Geometry; Straight lines in R3, Equations for planes.
SS-1204T: Functional English (Cr Hr 3+0)
(Prerequisite: none)
Paragraph and Essay Writing, Descriptive Essays; Sentence Errors, Persuasive Writing; How
to give presentations, Sentence Errors; Oral Presentations, Comparison and Contrast Essays,
Dialogue Writing, Short Story Writing, Review Writing, Narrative Essays, Letter Writing.
CS-1203T: Object Oriented Programming (Cr Hr 3+1)
(Prerequisite: CS-1101T)
Introduction to object oriented design, history and advantages of object oriented design, introduction to object oriented programming concepts, classes, objects, data encapsulation, constructors, destructors, access modifiers, const vs non-const functions, static data members & functions, function overloading, operator overloading, identification of classes and their relationships, composition, aggregation, inheritance, multiple inheritance, polymorphism, abstract classes and interfaces, generic programming concepts, function & class templates, standard template library, object streams, data and object serialization using object streams, exception handling.
EE-1201T: Digital Logic Design (Cr Hr 3+1)
(Prerequisite: none)
Number Systems, Logic Gates, Boolean Algebra, Combination logic circuits and designs, Simplification Methods (K-Map, Quinn Mc-Cluskey method), Flip Flops and Latches, Asynchronous and Synchronous circuits, Counters, Shift Registers, Counters, Triggered devices & its types. Binary Arithmetic and Arithmetic Circuits, Memory Elements, State Machines. Introduction Programmable Logic Devices (CPLD, FPGA); Lab Assignments using tools such as Verilog HDL/VHDL, MultiSim.
CS-2104T: Data Structure & Algorithms (Cr Hr 3+1)
(Prerequisite: CS-1101T)
Abstract data types, complexity analysis, Big Oh notation, Stacks (linked lists and array implementations), Recursion and analyzing recursive algorithms, divide and conquer algorithms, Sorting algorithms (selection, insertion, merge, quick, bubble, heap, shell, radix, bucket), queue, dequeuer, priority queues (linked and array implementations of queues), linked list & its various types, sorted linked list, searching an unsorted array, binary search for sorted arrays, hashing and indexing, open addressing and chaining, trees and tree traversals, binary search trees, heaps, M-way tress, balanced trees, graphs, breadth-first and depth-first traversal, topological order, shortest path, adjacency matrix and adjacency list implementations, memory management and garbage collection.
CS-2105T: Discrete Structures (Cr Hr 3+0)
(Prerequisite: none)
Mathematical reasoning, propositional and predicate logic, rules of inference, proof by induction, proof by contraposition, proof by contradiction, proof by implication, set theory, relations, equivalence relations and partitions, partial orderings, recurrence relations, functions, mappings, function composition, inverse functions, recursive functions, Number Theory, sequences, series, counting, inclusion and exclusion principle, pigeonhole principle, permutations and combinations, elements of graph theory, planar graphs, graph coloring, euler graph, Hamiltonian path, rooted trees, traversals.
SS-2105T: Expository Writing (Cr Hr 3+0)
(Prerequisite: none)
Principles of writing good English, understanding the composition process: writing clearly; words, sentence and paragraphs; Comprehension and expression; Use of grammar and punctuation. Process of writing, observing, audience collecting, composing, drafting and revising, persuasive writing, reading skills, listening skills and comprehension, skills for taking notes in class, skills for exams; Business communications; planning messages, writing concise but with impact. Letter formats, mechanics of business, letter writing, letters, memo and applications, summaries, proposals, writing resumes, styles and formats, oral communications, verbal and non-verbal communication, conducting meetings, small group communication, taking minutes. Presentation skills; presentation strategies, defining the objective, scope and audience of the presentation, material gathering material organization strategies, time management, opening and concluding, use of audio-visual aids, delivery and presentation.
CS-2106T: Computer Organization & Assembly Language (Cr Hr 2+1)
(Prerequisite: EE-1201T)
Introduction to computer systems: Information is bits + context, programs are translated by other programs into different forms, it pays to understand how compilation systems work, processors read and interpret instructions stored in memory, caches matter, storage devices form a hierarchy, the operating system manages the hardware, systems communicate with other systems using networks; Representing and manipulating information: information storage, integer representations, integer arithmetic, floating point; Machine-level representation of programs: a historical perspective, program encodings, data formats, accessing information, arithmetic and logical operations, control, procedures, array allocation and access, heterogeneous data structures, putting it together: understanding pointers, life in the real world: using the gdb debugger, outof-bounds memory references and buffer overflow, x86-64: extending ia32 to 64 bits, machine-level representations of floating-point programs; Processor architecture: the Y86 instruction set architecture, logic design and the Hardware Control Language (HCL), sequential Y86 implementations, general principles of pipelining, pipelined Y86 implementations.
CS-2207T: Theory of Automata & Formal Languages (Cr Hr 3+0)
(Prerequisite: none)
Finite State Models: Language definitions preliminaries, Regular expressions/Regular languages, Finite automata (FAs), Transition graphs (TGs), NFAs, Kleene’s theorem, Transducers (automata with output), Pumping lemma and non-regular language Grammars and PDA: CFGs, Derivations, derivation trees and ambiguity, Simplifying CFLs, Normal form grammars and parsing, Decidability, Context sensitive languages, grammars and linear bounded automata (LBA), Chomsky’s hierarchy of grammars Turing Machines Theory: Turing machines, Post machine, Variations on TM, TM encoding, Universal Turing Machine, Defining Computers by TMs.
CS-2208T: Introduction to Operating Systems (Cr Hr 2+1)
(Prerequisite: CS-2104T)
Operating systems basics, system calls, process concept and scheduling, inter-process communication, multithreaded programming, multithreading models, threading issues, process scheduling algorithms, thread scheduling, multiple-processor scheduling, synchronization, critical section, synchronization hardware, synchronization problems, deadlocks, detecting and recovering from deadlocks, memory management, swapping, contiguous memory allocation, segmentation & paging, virtual memory management, demand paging, thrashing, memory-mapped files, file systems, file concept, directory and disk structure, directory implementation, free space management, disk structure and scheduling, swap space management, system protection, virtual machines, operating system security.
CS-2209T: Database Systems (Cr Hr 3+1)
(Prerequisite: none)
Basic database concepts, Database approach vs file based system, database architecture, three level schema architecture, data independence, relational data model, attributes, schemas, tuples, domains, relation instances, keys of relations, integrity constraints, relational algebra, selection, projection, Cartesian product, types of joins, normalization, functional dependencies, normal forms, entity relationship model, entity sets, attributes, relationship, entity-relationship diagrams, Structured Query Language (SQL), Joins and sub-queries in SQL, Grouping and aggregation in SQL, concurrency control, database backup and recovery, indexes, NoSQL systems.
CS-2210T: Software Engineering (Cr Hr 3+0)
(Prerequisite: none)
Nature of Software, Overview of Software Engineering, Professional software development, Software engineering practice, Software process structure, Software process models, Agile software Development, Agile process models, Agile development techniques, Requirements engineering process, Functional and non-functional requirements, Context models, Interaction models, Structural models, behavioral models, model driven engineering, Architectural design, Design and implementation, UML diagrams, Design patterns, Software testing and quality assurance, Software evolution, Project management and project planning, configuration management, Software Process improvement.
MT-2204: Multivariable Calculus (Cr Hr 3+0)
(Prerequisite: MT-1202T)
Functions of Several Variables and Partial Differentiation. Multiple Integrals, Line and Surface Integrals. Green’s and Stoke’s Theorem. Fourier Series: periodic functions, Functions of any period P-2L, Even & odd functions, Half Range expansions, Fourier Transform; Laplace Transform, Z-Transform.
CS-2211T: Compiler Construction (Cr Hr 2+1)
(Prerequisite: CS-2207T)
Compiler Techniques and Methodology: Organization of Compilers, Lexical and Syntax Analysis, Parsing techniques, Object code generation and optimization, detection and recovery from errors. Contrast between compilers and interpreters.
SS-2106T: Technical Report Writing (Cr Hr 3+0)
(Prerequisite: SS-2105T)
Overview of technical reporting, use of library and information gathering, administering questionnaires, reviewing the gathered information; Technical exposition; topical arrangement, exemplification, definition, classification and division, casual analysis, effective exposition, technical narration, description and argumentation, persuasive strategy, Organizing information and generation solution: brainstorming, organizing material, construction of the formal outline, outlining conventions, electronic communication, generation solutions. Polishing style: paragraphs, listening sentence structure, clarity, length and order, pomposity, empty words, pompous vocabulary, document design: document structure, preamble, summaries, abstracts, table of contents, footnotes, glossaries, cross-referencing, plagiarism, citation and bibliography, glossaries, index, appendices, typesetting systems, creating the professional report; elements, mechanical elements and graphical elements. Reports: Proposals, progress reports, Leaflets, brochures, handbooks, magazines articles, research papers, feasibility reports, project reports, technical research reports, manuals and documentation, thesis. Electronic documents, Linear verses hierarchical structure documents.
MT-3105T: Probability and Statistics (Cr Hr 3+0)
(Prerequisite: none)
Introduction to Statistics and Data Analysis, Statistical Inference, Samples, Populations, and the Role of Probability. Sampling Procedures. Discrete and Continuous Data. Statistical Modeling. Types of Statistical Studies. Probability: Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Bayes’ Rule. Random Variables and Probability Distributions. Mathematical Expectation: Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev’s Theorem. Discrete Probability Distributions. Continuous Probability Distributions. Fundamental Sampling Distributions and Data Descriptions: Random Sampling, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem. Sampling Distribution of S2, t-Distribution, FQuantile and Probability Plots. Single Sample & One- and Two-Sample Estimation Problems. Single Sample & One- and Two-Sample Tests of Hypotheses. The Use of PValues for Decision Making in Testing Hypotheses (Single Sample & One- and Two Sample Tests), Linear Regression and Correlation. Least Squares and the Fitted Model, Multiple Linear Regression and Certain, Nonlinear Regression Models, Linear Regression Model Using Matrices, Properties of the Least Squares Estimators.
CS-2213T: Computer Networks (Cr Hr 2+1)
(Prerequisite: none)
Introduction and protocols architecture, basic concepts of networking, network topologies, layered architecture, physical layer functionality, data link layer functionality, multiple access techniques, circuit switching and packet switching, LAN technologies, wireless networks, MAC addressing, networking devices, network layer protocols, IPv4 and IPv6, IP addressing, sub netting, CIDR, routing protocols, transport layer protocols, ports and sockets, connection establishment, flow and congestion control, application layer protocols, latest trends in computer networks.
CS-3701T: Web Engineering (Cr Hr 2+1)
(Prerequisite: none)
Web programming languages (e.g., HTML5, CSS 3, Java Script, PHP/JSP/ASP.Net), Design principles of Web based applications, Web platform constraints, Software as a Service (SaaS), Web standards, Responsive Web Design, Web Applications, Browser/Server Communication, Storage Tier, Cookies and Sessions, Input Validation, Full stack state management, Web App Security – Browser Isolation, Network Attacks, Session Attacks, Large scale applications, Performance of Web Applications, Data Centers, Web Testing and Web Maintenance.
CS-2214T: Artificial Intelligence (Cr Hr 2+1)
(Prerequisite: none)
An Introduction to Artificial Intelligence and its applications towards Knowledge Based Systems; Introduction to Reasoning and Knowledge Representation, Problem Solving by Searching (Informed searching, Uninformed searching, Heuristics, Local searching, Minmax algorithm, Alpha beta pruning, Game-playing); Case Studies: General Problem Solver, Eliza, Student, Macsyma; Learning from examples; ANN and Natural Language Processing; Recent trends in AI and applications of AI algorithms. Python programming language will be used to explore and illustrate various issues and techniques in Artificial Intelligence.
CS-2215T: Information Security (Cr Hr 2+1)
(Prerequisite: none)
Information security foundations, security design principles; security mechanisms, symmetric and asymmetric cryptography, encryption, hash functions, digital signatures, key management, authentication and access control; software security, vulnerabilities and protections, malware, database security; network security, firewalls, intrusion detection; security policies, policy formation and enforcement, risk assessment, cybercrime, law and ethics in information security, privacy and anonymity of data.
MT-3206T: Numerical Computing (Cr Hr 3+0)
(Prerequisite: none)
Mathematical preliminaries and error analysis, round-off errors and computer arithmetic, Calculate Divided Differences. Use Divided-difference Table. Find Newton’s Interpolation Polynomial. Calculate Interpolation with Equally Spaced Data. Find the Difference Table. Calculate, Newton’s Forward & Backward Difference Formulae. Use Gauss Formulae. Use Stirling’s Interpolation Formula. Use Bessel’s Interpolation Formula. Use Everett’s Interpolation Formula. Solve Nonlinear Equations. Solve Equations by Bisection Method. Solve Equations by Regula Falsi Method. Solve Equations by Secant Method. Solve Equations by Newton-Raphson Method. Find Fixed Point Iteration. Solve Equations by Jacobi Iterative Methods. Solve Equations by Gauss Seidel Method Calculate Numerical Differentiation. Find Numerical Differentiation Formulae Based on Equally Spaced Data. Find Numerical Differentiation Based on Newton’s Forward Differences. Find Numerical Differentiation Based on Newton’s Backward Differences. Find Numerical Differentiation Based on Stirling’s Formula. Find Numerical Differentiation Based on Bessel’s Formula. Find Numerical Differentiation Based on Lagrange’s Formula. Calculate Error Analysis of Differentiation Formulae. Solve Richardson Extrapolation. Calculate Numerical Integration. Use Trapezoidal Rule with Error Term. Use Simpson’s 1/3 Rule with Error Term. Use Simpson’s 3/8 Rule with Error Term. Use Composite Numerical Integration. Use Composite Trapezoidal Rule. Use Composite Simpson’s Rule. Find Richardson’s Extrapolation. Find Newton-Cotes Closed Quadrature Formulae.
CS-2216T: Design & Analysis of Algorithms (Cr Hr 3+0)
(Prerequisite: none)
Introduction; role of algorithms in computing, Analysis on nature of input and size of input Asymptotic notations; Big-O, Big Ω, Big Θ, little-o, little-ω, Sorting Algorithm analysis, loop invariants, Recursion and recurrence relations; Algorithm Design Techniques, Brute Force Approach, Divide-and-conquer approach; Merge, Quick Sort, Greedy approach; Dynamic programming; Elements of Dynamic Programming, Search trees; Heaps; Hashing; Graph algorithms, shortest paths, sparse graphs, String matching; Introduction to complexity classes.
CS-4150P: Final Year Project (Cr Hr 0+3)
To give the students the chance for enhancing their theoretical and practical knowledge in the field of research and development.
MG-1201: Economics and Management (Cr Hr 3+0)
(Prerequisite: none)
Introduction: Basic concept and Principles of Economics, Microeconomic theory, the problems of scarcity, Concept of Engineering Economy.
Economic Environment: Consumer and producer goods, goods and services, demand & supply concept. Equilibrium, elasticity of demand, elasticity of supply, measures of Economic worth. Price-supply-demand relationships. Perfect competition, monopoly, monopolistic competition and oligopoly, Fundamentals of Marketing. Elementary Financial Analysis: Basic accounting equation. Development and interpretation of financial statement-Income statement, Balance sheet and cash flow. Working capital management. Break Even Analysis: Revenue/cost terminologies, behavior of costs. Determination of costs/revenues. Numerical and graphical presentations. Practical applications. BEA as a management tool for achieving financial / operation efficiency.
Selection Between Alternatives: Time value of money and financial internal rate of return. Present Value, future value and annuities. Cost-benefit analysis, selection amongst materials, techniques, design etc. Investment philosophy. Investment alternatives having identical lives. Alternatives having different lives. Make or buy decisions and replacement decisions.
Value Analysis/Value Engineering: Value analysis procedures. Value engineering procedures. Value analysis versus value engineering. Advantages and applications in different areas. Value analysis in designing and purchasing. Linear Programming problems, graphic solution simplex procedure. Duality problem.
Depreciation and Taxes: Depreciation concept, economic life, methods of depreciations, profit and returns on capital, productivity of capital gain (loss) on the disposal of an asset, depreciation as a tax shield. Business Organization: Type of ownership, single ownership, partnerships, corporation, type of stocks and joint stock companies banking and specialized credit institutions. Capital Financing & Allocation: Capital budgeting, allocation of capital among independent projects, financing with debt capital, financing with equity capital trading on equity, financial leveraging.
SS-4109: Entrepreneurship (Cr Hr 3+0)
(Prerequisite: none)
Entrepreneurship and the Entrepreneurial mind-set. Entrepreneurial intentions and corporate Entrepreneurship. Entrepreneurial strategy. Generating exploiting new entries. Creativity and the business ideas. Identifying and analyzing domestic and international opportunities. Intellectual property and other legal issues for the Entrepreneur. The business plan. Creating and starting the venture. The Marketing plan. The Organizational plan. The Financial plan. Sources of capital. Informal risk capital, venture capital and going public. Strategies for growth and managing the implication of growth. Succession planning and strategies for harvesting and ending the venture.
Course Outlines of Domain Elective and Elective Courses of BS (Software Engineering)
SE-2102T: Software Requirement Engineering (Cr Hr 2+1)
(Prerequisite: SE-1201T)
Definition of Requirements Engineering and role in system development, Fundamental concepts and activities of Requirements Engineering, Information elicitation techniques, Modeling scenarios. Fundamentals of goal-oriented Requirements Engineering, Modelling behavioral goals, Modelling quality goals, Goal modelling heuristics, Object modelling for Requirements Engineering, Object modelling notations, Object modelling heuristics, Identifying objects from goals, Modelling Use Cases and state machines, Deriving operational requirements from goals, Requirements Specification, Requirements verification and validation. Management of inconsistency and conflict, Techniques for requirements evaluation, selection and prioritization; Requirements management; Requirements traceability.
SE-2203T: Software Design & Architecture (Cr Hr 3+0)
(Prerequisite: SE-1201T)
Introduction to the discipline of design, generic design processes, and design management; software product design, including analysis activities such as needs elicitation and documentation, requirements development activities such as requirements specification and validation, prototyping, and use case modelling; engineering design analysis, including conceptual modelling and both architectural and detailed design; survey of patterns in software design, including architectural styles and common mid-level design patterns.
SE-3104T: Software Construction and Development (Cr Hr 2+1)
(Prerequisite: SE-1201T)
Software development process, Software engineering process infrastructure, Software engineering process improvement, Systems engineering life cycle models, Process implementation, Levels of process definition, Life cycle model characteristics, Individual and team software process, Lehman’s Laws, code salvaging, and configuration management. Martin Fowler’s refactoring concepts and their application to small projects. Apply Michael Feathers’ “legacy code” concepts. Exception handling, making methods robust by having them check their inputs sent from calling objects. Software configuration management, Release management, Software configuration management processes, Software deployment processes, Distribution and backup, Evolution processes and activities, Basic concepts of evolution and maintenance, Working with legacy systems, Refactoring, Error handling, exception handling, and fault tolerance. Personal reviews (design, code, etc.), Peer reviews (inspections, walkthroughs, etc.).
SE-3105T: Software Quality Engineering (Cr Hr 2+1)
(Prerequisite: SE-1201T)
Software Quality, Software Quality Attributes, Quality Engineering., Testing: Concepts, Issues, and Techniques, Software testing lifecycle., Testing Scopes., Testing Approaches., Testing Concepts., Test Planning Process, Introduction to testing process, Requirement of software test planning, Testing documentation, Reporting and historical data recording., Software testing techniques, Testing philosophies , Testing strategies, Model based testing, Software testing techniques, Testing using models, Domain and combinatorial testing, Unit and integration testing, Acceptance testing, Test automation, Slicing, Software reliability models and engineering, Introduction, Exponential model., Reliability growth models, Modeling process, Software inspections, Software reviews, Inspection checks and metrics, Quality Models, Models for quality assessment, Product quality metrics, Quality Measurements, In-Process metrics for software testing, In-Process quality management, Effort/outcome models, System testing, Introduction to sub-system testing, From functional to system aspects of testing, System testing, Introduction to system testing, Scenarios development, System testing, Use-cases for testing, Specification-based testing, Open issues on software testing.
SE-3206T: Software Project Management (Cr Hr 2+1)
(Prerequisite: SE-1201T)
Introduction to Software Project Management, Project Management concepts, Project Management Tools, PMI‘s Knowledge areas, PMI Framework, PMI Process Groups. Understanding Organizations. Project Planning, Project Evaluation, Selection of an Appropriate Approach in Project, Software Effort Estimation, Activity Planning, Risk Management, Evaluating the Risks to the Schedule, Risk Control, Configuration Management and Maintenance, Environment for Configuration Control, Resource Allocation, Monitoring & Control, Review and Evaluation, Challenges of Outsourcing in Project Management.
SE-4301T: Software Verification and Validation (Cr Hr 2+1)
(Prerequisite: None)
Introduction to software quality assurance, The Quality Challenge, Quality Control v/s Quality Assurance, Quality Assurance in Software Projects (Phases), Principles and Practices, Quality Management, Quality Assurance and Standards, Quality Planning and Quality Control, Verification and Validation, Planning Verification and Validation, Critical System Validation, Reliability Validation, Safety Assurance, Security assessment, Inspections and reviews, Principles of software validation, Software verification, Planning for Software Quality Assurance, Software Quality Assurance (SQA) Plans, SQA-Organizational Level Initiatives, SQA Planning (Observations, Numbers, Results), Software Testing, Specification based test construction techniques, White-box and grey-box testing, Others comprehensive software testing techniques for SDLC, Control flow oriented test construction techniques, Data flow oriented test construction techniques, Clean-room approach to quality assurance, Product Quality and Process Quality, Standards for process quality and standards for product quality, Walkthroughs and Inspections, Structure, Checklist, Audits, Roles and Responsibilities (Reviews, Inspections, etc), How to make Reviews and Inspections most effective.
SE-4305T: Web Engineering (Cr Hr 2+1)
(Prerequisite: SE-1201T)
Web programming languages (e.g., HTML5, CSS 3, Java Script, PHP/JSP/ASP.Net), Design principles of Web based applications, Web platform constraints, Software as a Service (SaaS), Web standards, Responsive Web Design, Web Applications, Browser/Server Communication, Storage Tier, Cookies and Sessions, Input Validation, Full stack state management, Web App Security – Browser Isolation, Network Attacks, Session Attacks, Large scale applications, Performance of Web Applications, Data Centers, Web Testing and Web Maintenance.
SE-4306T: Data Science (Cr Hr 2+1)
(Prerequisite: None)
Introduction: What is Data Science? Big Data and Data Science hype, Datafication, Current landscape of perspectives, Skill sets needed; Statistical Inference: Populations and samples, Statistical modeling, probability distributions, fitting a model, Intro to Python; Exploratory Data Analysis and the Data Science Process; Basic Machine Learning Algorithms: Linear Regression, k-Nearest Neighbors (k-NN), k-means, Naive Bayes; Feature Generation and Feature Selection; Dimensionality Reduction: Singular Value Decomposition, Principal Component Analysis; Mining Social-Network Graphs: Social networks as graphs, Clustering of graphs, Direct discovery of communities in graphs, Partitioning of graphs, Neighborhood properties in graphs; Data Visualization: Basic principles, ideas and tools for data visualization; Data Science and Ethical Issues: Discussions on privacy, security, ethics, Next-generation data scientists.
Approved Fee Structure for BS (Software Engineering) Program
Following is the APPROVED fee structure for BS (Software Engineering) Program:
Fee Head | Semester 1 Charges (Rs.) |
---|---|
Admission Charges (Non-Refundable) | 10,000 |
Security Deposit (Refundable) | 5,000 |
Enrollment Fee (One Time Only) | 5,000 |
Total Credits in Semester 1 | 17 |
Per Credit Charges | 4,500 |
Course Fee (Semester 1) | 76,500 |
Total | Rs.96,500/ |
Note: The University reserves the right to change its fee at any time without prior notice. |
ELIGIBILITY & ADMISSION CRITERIA
Minimum 50% marks in Intermediate/12 years schooling/A- Level (HSSC) or Equivalent with Mathematics are required for admission in BS (Software Engineering) Program.
The students who have not studied Mathematics at intermediate level have to pass deficiency courses of Mathematics (06 credits) in First Year.
Program Education Outcomes
PEOs of BS in Software Engineering
Program Learning Outcomes
PLOs of BS in Software Engineering
S# | Program Learning Outcomes (PLOs) | Computing Professional Graduate |
---|---|---|
1 | Academic Education | To prepare graduates as computing professionals |
2 | Knowledge for Solving Computing Problems | Apply knowledge of computing fundamentals, knowledge of a computing specialization, and mathematics, science, and domain knowledge appropriate for the computing specialization to the abstraction and conceptualization of computing models from defined problems and requirements. |
3 | Problem Analysis | Identify, formulate, research literature, and solve complex computing problems reaching substantiated conclusions using fundamental principles of mathematics, computing sciences, and relevant domain disciplines. |
4 | Design/ Development of Solutions | Design and evaluate solutions for complex computing problems, and design and evaluate systems, components, or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations. |
5 | Modern Tool Usage | Create, select, adapt and apply appropriate techniques, resources, and modern computing tools to complex computing activities, with an understanding of the limitations. |
6 | Individual and Team Work | Function effectively as an individual and as a member or leader in diverse teams and in multi-disciplinary settings. |
7 | Communication | Communicate effectively with the computing community and with society at large about complex computing activities by being able to comprehend and write effective reports, design documentation, make effective presentations, and give and understand clear instructions. |
8 | Computing Professionalism and Society | Understand and assess societal, health, safety, legal, and cultural issues within local and global contexts, and the consequential responsibilities relevant to professional computing practice |
9 | Ethics | Understand and commit to professional ethics, responsibilities, and norms of professional computing practice |
10 | Life-long Learning | Recognize the need, and have the ability, to engage in independent learning for continual development as a computing professional |